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How can machine learning be creative?

Supervised learning (not particularly creative)

Machine 
learning 

algorithm
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How can machine learning be creative?
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How can machine learning be creative?
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Machine 
learning 

algorithm

Unsupervised learning (more creative)

Unlabeled
data

...

Generative
model

BigGAN (Brock et 
al. 2018); video by 
Mario Klingemann

http://www.youtube.com/watch?v=YY6LrQSxIbc
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Traditional generative modeling framework
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Interactive generative modeling framework



Assisting musicians with interactive ML
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Harmonize with human-composed material



Assisting non-musicians with interactive ML
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Help non-musicians create music

© MTV Networks



What do we need for machine learning?

During training
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Data

Specialized infrastructure

After training
Commodity hardware

Interface



Popular classes of generative models

11

● Generative adversarial networks (Goodfellow et al. 2014)
● Variational autoencoders (Kingma et al. 2013)
● Language models (e.g. Markov chains, RNNs)

Each is a different way of modeling data distribution



Generative adversarial networks
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Generative adversarial networks
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Goodfellow et al. 2014

Radford et al. 2016

Karras et al. 2018



How do GANs work?
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Real or fake?

Real image

Generative adversarial 
networks (Goodfellow et al. 2014)

Fake image

The goal of GANs is to minimize 
distance between                and 



Image generation with GANs
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Real images Generated images



Audio generation 
with GANs

16chrisdonahue.com/wavegan

https://docs.google.com/file/d/1s3g9ANhyrZ5MqvkJV0qc84cThTd446qf/preview


Can we intuitively control GAN generation?

17

Interpolation
(no modification)

Class conditioning
(limited modification)

“Smart filters”
(heavy modification)

Images synthesized by BigGAN (Brock et al. 2018)



“Smart filters”: pix2pix (Isola et al. 2016)
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Figure from Image-to-image translation with conditional adversarial networks 
(Isola et al. 2016)



pix2pix (Isola et al. 2016)
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edges2cats
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https://affinelayer.com/pixsrv/

https://affinelayer.com/pixsrv/


Abusing edges2cats
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pose2dance

22Figure from Everybody Dance Now (Chan et al. 2018)



pose2dance
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http://www.youtube.com/watch?v=PCBTZh41Ris


CycleGAN
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Figure from Unpaired image-to-image translation using cycle-consistent 
adversarial networks (Zhu et al. 2017)



CycleGAN for musical timbre transfer
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Universal music transformer 
(Mor et al. 2018)

My attempt 
(unpublished)

Real

Fake

Acoustic Synthetic

http://www.youtube.com/watch?v=vdxCqNWTpUs
https://docs.google.com/file/d/1BPkLPyMxUCuNp6e3On2i3r8h6QHgv26t/preview
https://docs.google.com/file/d/1Y3bFqNH7T0bBWMipczFXEsdWM3rMaM1e/preview
https://docs.google.com/file/d/1QmvMQiAzeFPOWWJTdEcgr3UJHivFVU9J/preview
https://docs.google.com/file/d/1wkF4ORhDZf-yS8bu_S2KCJOHrHnOFY5W/preview


Variational autoencoders
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What is an autoencoder?
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An autoencoder is (usually) a pair of neural networks which 
learn to compress data

Minimize:



What is a variational autoencoder?
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A variational autoencoder imposes particular structure on 
the encoder latent space so that we can sample

Minimize:



SketchRNN (Ha and Eck 2017)
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http://magic-sketchpad.glitch.me

http://magic-sketchpad.glitch.me


Drum VAE (Roberts et al. 2018)
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https://codepen.io/teropa/full/RMGxOQ/

https://codepen.io/teropa/full/RMGxOQ/


Language models
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What is a statistical language model?

A statistical language model seeks to answer the question 
“how likely is this sequence” by comparing its statistics to 
those aggregated from a corpus of training data

How likely is this melody?
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What does a language model look like?

Language 
model

Musical 
sequence How likely?

Factorization 
(representation)

C      C      G      G        A      A      G
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Improving our simple language model

Unigram model

Bigram model 
(Markov chain)
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Improving our simple language model

Unigram model

Bigram model 
(Markov chain)

https://docs.google.com/file/d/10l6ZqSVTikhQZU9oKSE0ktORRUHbMHt9/preview
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Generalizing our language model

Simple 
model

Improved 
model

Generalized language model
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Neural network approach
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Neural network approach

https://docs.google.com/file/d/1axAtGx7wOYJHAtfkRo8caWDKpiJkESfO/preview


Language modeling of piano music
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Music Transformer (Huang et al. 2018)

https://magenta.tensorflow.org/music-transformer

https://docs.google.com/file/d/10QX2Tca2DtjWI42SkzSmBhq4y82MJZ-p/preview


Piano Genie (Donahue et al. 2018)

https://magenta.tensorflow.org/pianogenie
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Language modeling with gestural control

Demo: http://piano-genie.glitch.me
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http://pear-olive.glitch.me
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Language modeling of recipes

● 1 ½ teaspoon chicken brown water
● 1 teaspoon dry chopped leaves
● 1/3 cup shallows
● 10 oz brink custard
● ¼ cup bread liquid
● ½ cup baconfroots

Instructions:

Dice the pulp of the eggplant and put it in a bowl with the vast stark rocks. Whip ½ 
pint of heavy cream. Add 4 Tbsp. brandy or rum to possibly open things that will 
never be wholly reported.

Janelle Shane 2019
aiweirdness.com



Language modeling of audio
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WaveNet (van den Oord et al 2016)

https://deepmind.com/blog/wavenet-generative-model-raw-audio/

https://docs.google.com/file/d/1NrGPJveRid5lto7c3jUsCpgvLXyDruKi/preview


Artists using generative models
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Artists using 
generative models
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Helena Serin
Primrose (2019)



Artists using 
generative models
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Mario Klingemann
Untitled (2018)



Artists using 
generative models
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Holly Herndon & Jlin
Godmother (2018)

http://www.youtube.com/watch?v=sc9OjL6Mjqo


Thanks!
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cdonahue@ucsd.edu

chrisdonahue.com


