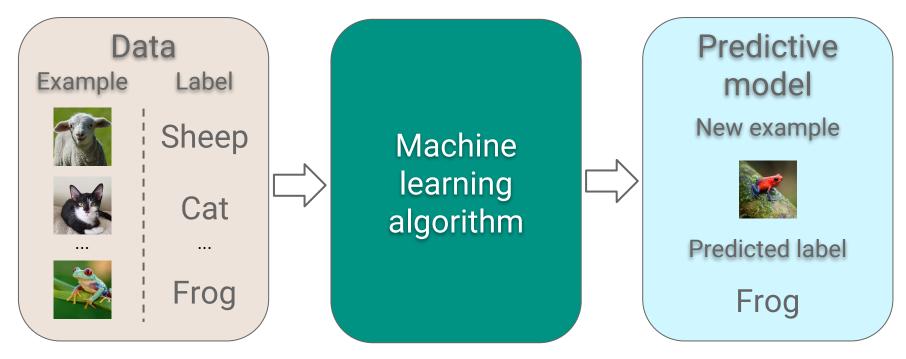


Pairing human control with generative models for creative content synthesis

Chris Donahue UC San Diego

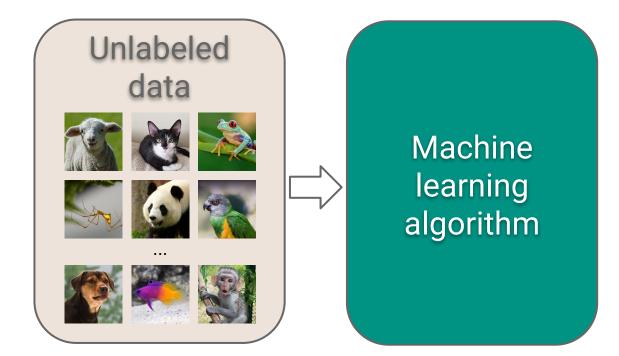
How can machine learning be creative?

Supervised learning (not particularly creative)



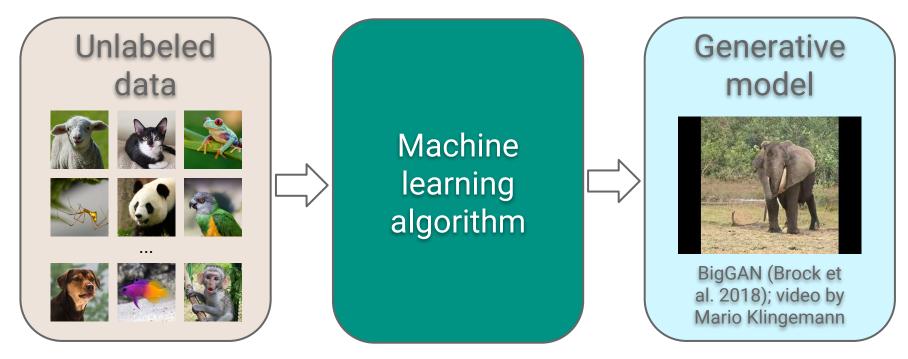
How can machine learning be creative?

Unsupervised learning (more creative)

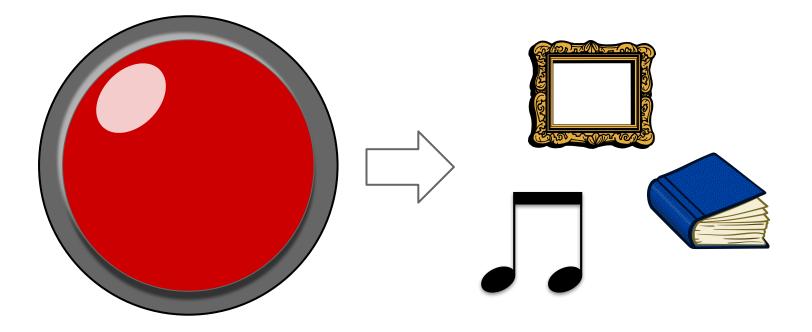


How can machine learning be creative?

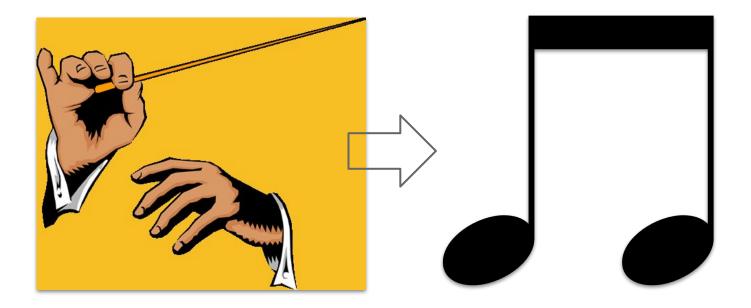
Unsupervised learning (more creative)



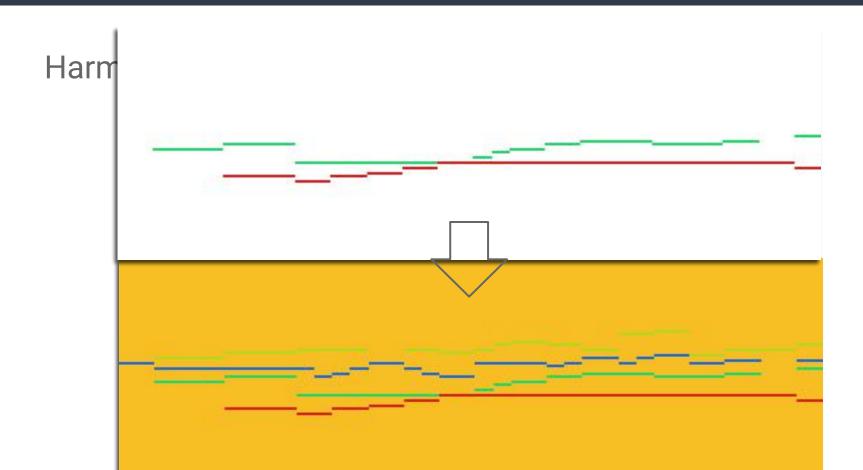
Traditional generative modeling framework



Interactive generative modeling framework

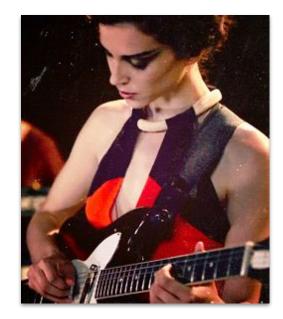


Assisting musicians with interactive ML



Assisting non-musicians with interactive ML

Help non-musicians create music



What do we need for machine learning?

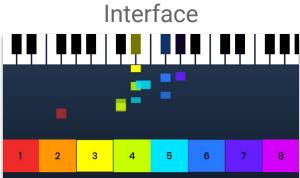
During training

Data

Specialized infrastructure

After training

Commodity hardware



Popular classes of generative models

- Generative adversarial networks (Goodfellow et al. 2014)
- Variational autoencoders (Kingma et al. 2013)
- Language models (e.g. Markov chains, RNNs)

Each is a different way of modeling data distribution

Generative adversarial networks

Generative adversarial networks

Goodfellow et al. 2014

Radford et al. 2016

Karras et al. 2018

How do GANs work?

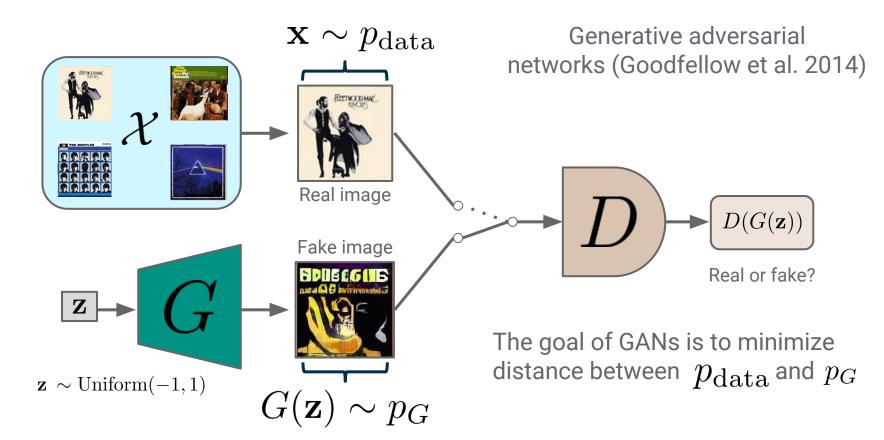
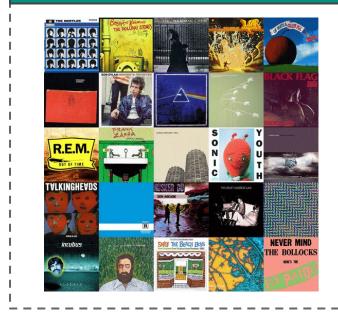


Image generation with GANs

Real images



Generated images

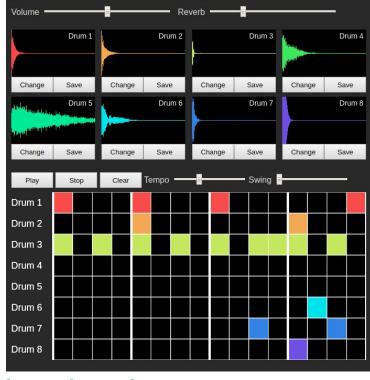
Audio generation with GANs

WaveGAN Demo

Chris Donahue, Julian McAuley, Miller Puckette

This is a demo of our WaveGAN method trained on drum sound effects (). All drum sounds are synthesized in browser by a neural network.

Shortcuts: Keys 1-8 play sounds. Shift+[1-8] changes sounds. Space starts/stops sequencer.



chrisdonahue.com/wavegan 16

Can we intuitively control GAN generation?

Images synthesized by BigGAN (Brock et al. 2018)

Interpolation (no modification)

Class conditioning (limited modification)

"Smart filters" (heavy modification)

"Smart filters": pix2pix (Isola et al. 2016)

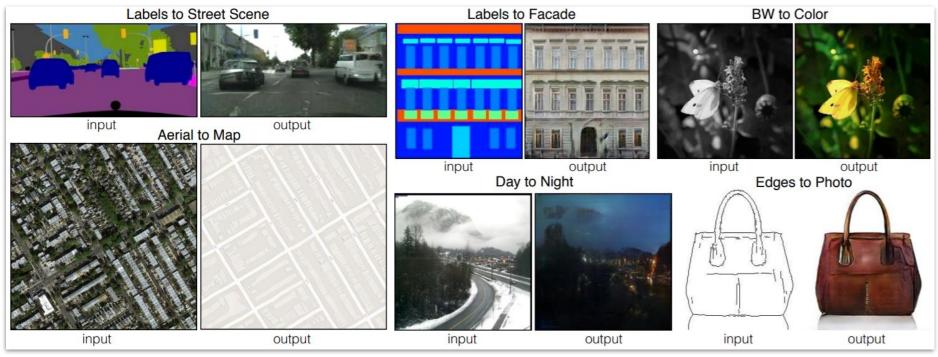
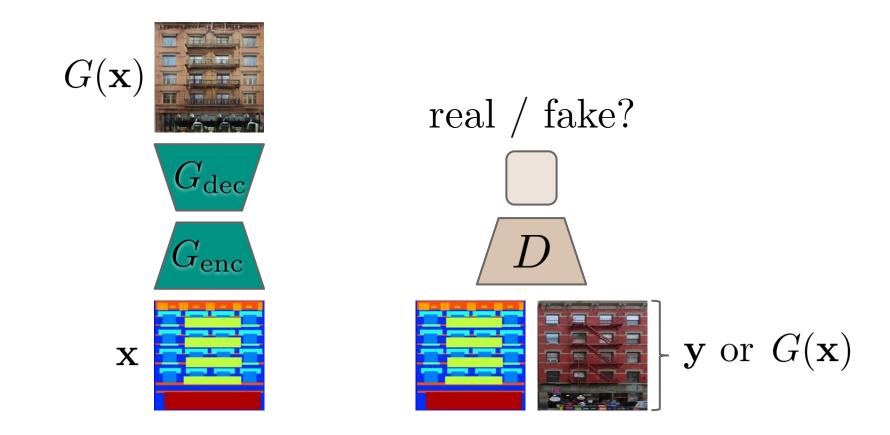
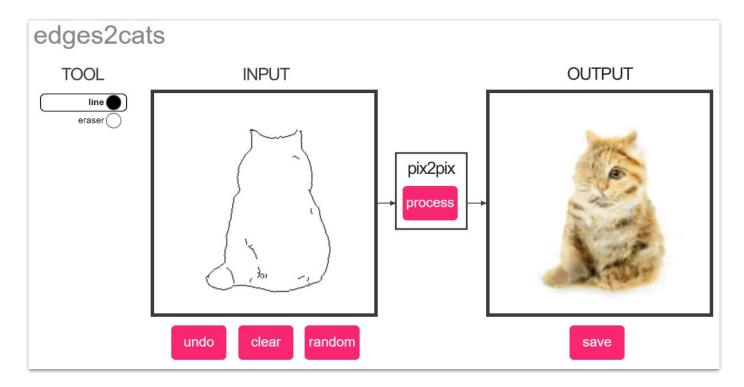


Figure from Image-to-image translation with conditional adversarial networks (Isola et al. 2016)

pix2pix (Isola et al. 2016)

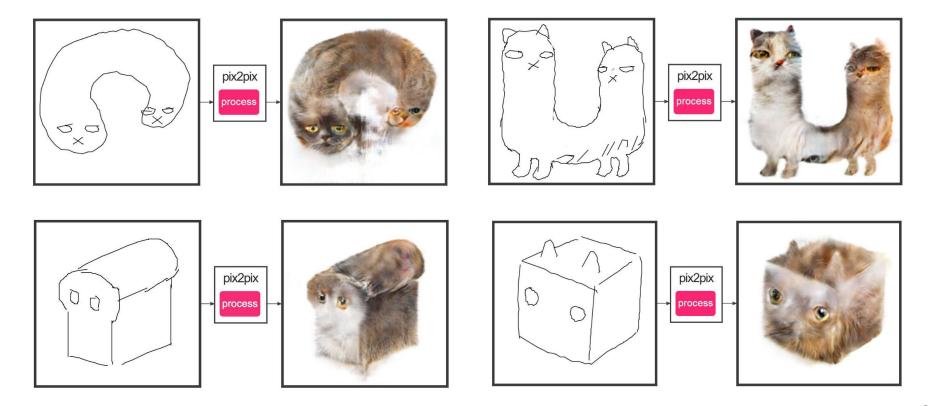


edges2cats



https://affinelayer.com/pixsrv/

Abusing edges2cats



pose2dance

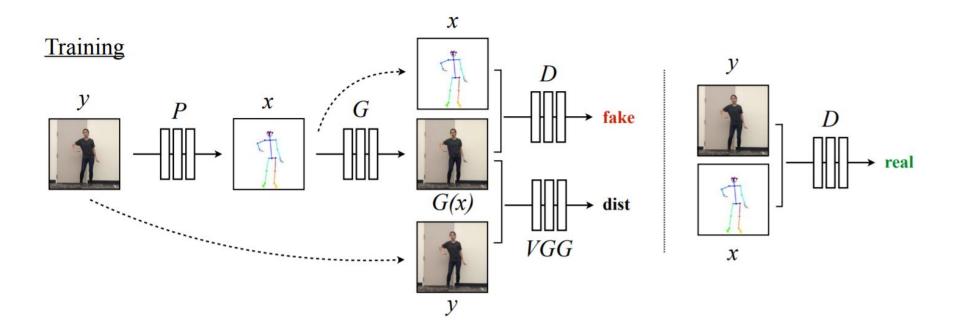
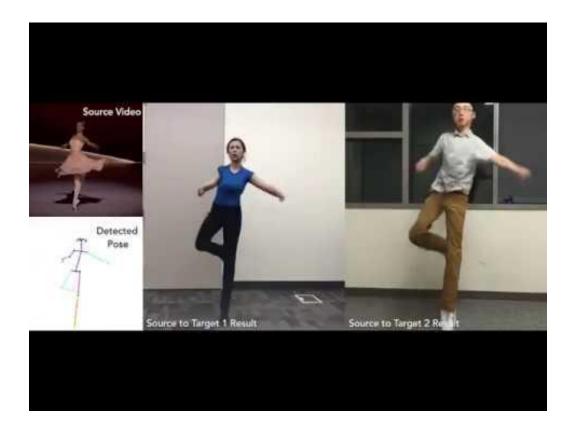


Figure from *Everybody Dance Now* (Chan et al. 2018)

pose2dance



CycleGAN

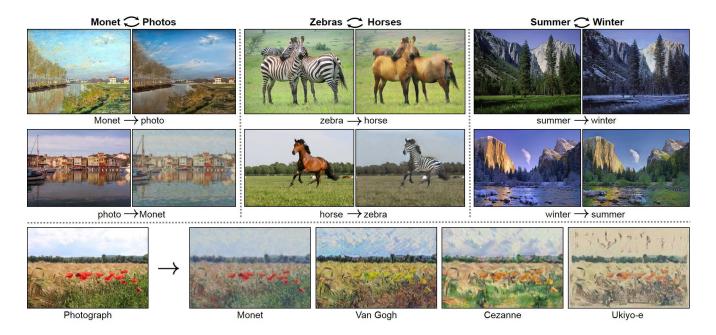
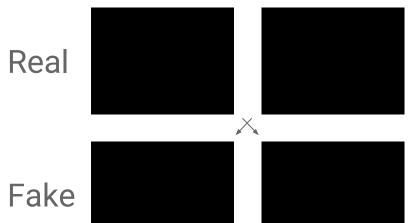


Figure from Unpaired image-to-image translation using cycle-consistent adversarial networks (Zhu et al. 2017)

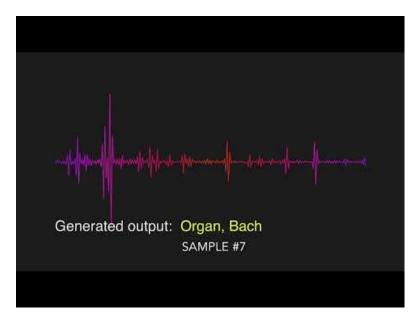
CycleGAN for musical timbre transfer

My attempt (unpublished)

Acoustic Synthetic



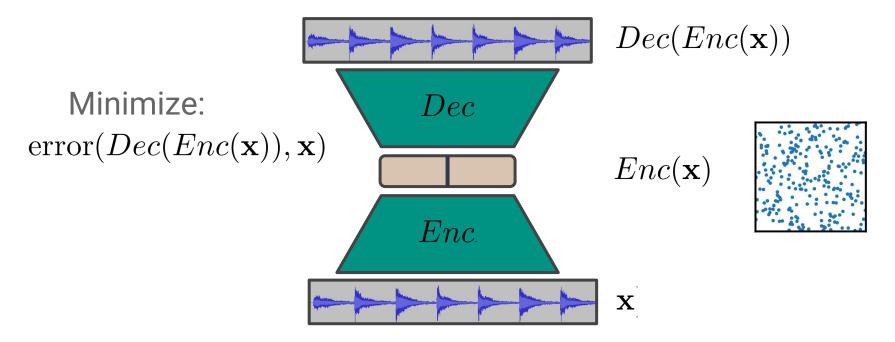
Universal music transformer (Mor et al. 2018)



Variational autoencoders

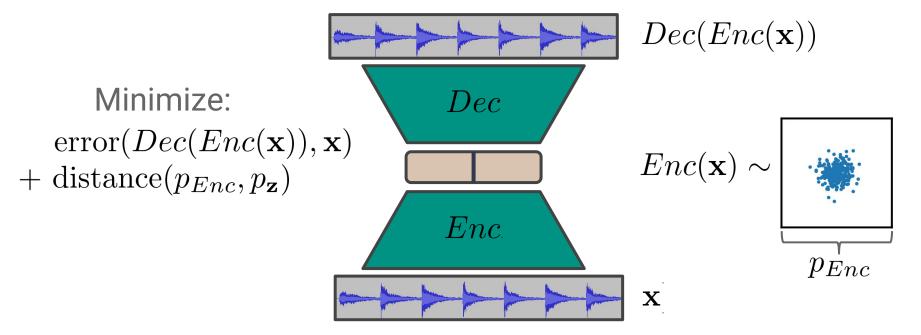
What is an autoencoder?

An autoencoder is (usually) a pair of neural networks which learn to compress data

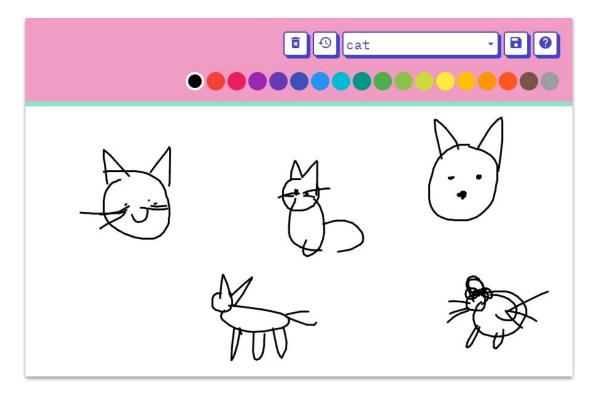


What is a *variational* autoencoder?

A variational autoencoder imposes particular structure on the encoder *latent space* so that we can sample

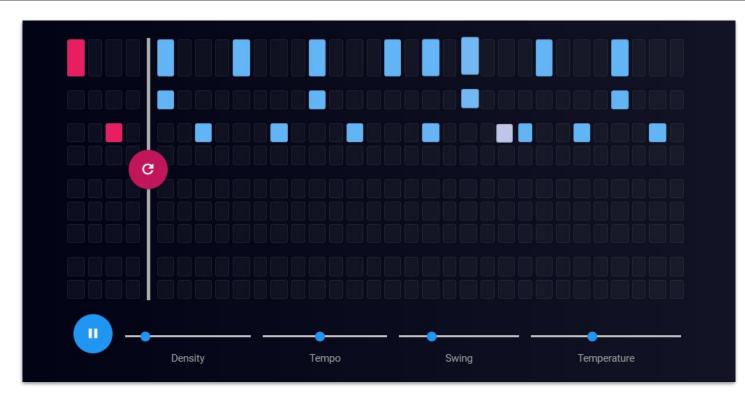


SketchRNN (Ha and Eck 2017)



http://magic-sketchpad.glitch.me

Drum VAE (Roberts et al. 2018)



https://codepen.io/teropa/full/RMGxOQ/

Language models

What is a *statistical language model*?

A statistical language model seeks to answer the question "how likely is this sequence" by comparing its statistics to those aggregated from a corpus of training data

How likely is this melody?

What does a language model look like?

Musical sequence

Factorization (representation)

 $P(\text{music}) = P(n_1) \cdot P(n_2) \cdot \ldots \cdot P(n_T)$

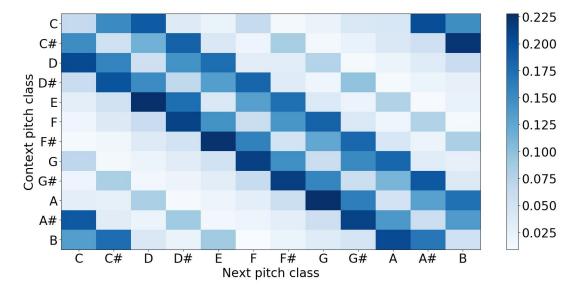
Language model

 $P(\text{seq}) = 0.13 \cdot 0.13 \cdot \ldots \cdot 0.14 = 1.18 \cdot 10^{-6}$

Improving our simple language model

Unigram model
$$P(n_1) \cdot P(n_2) \cdot \ldots \cdot P(n_T)$$

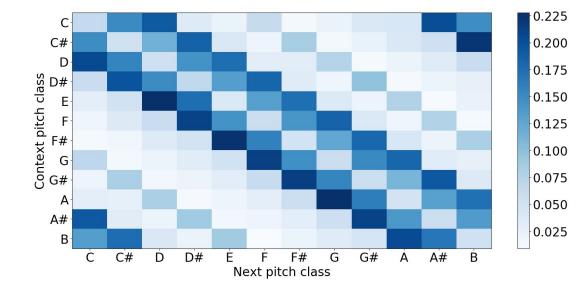
Bigram model (Markov chain) $P(n_1) \cdot P(n_2 \mid n_1) \cdot \ldots \cdot P(n_T \mid n_{T-1})$



Improving our simple language model

Unigram model
$$P(n_1) \cdot P(n_2) \cdot \ldots \cdot P(n_T)$$

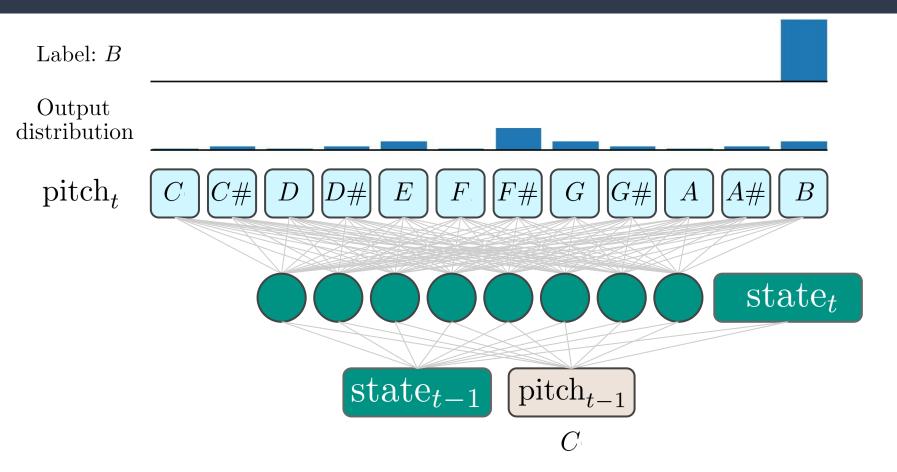
Bigram model
(Markov chain)
$$P(n_1) \cdot P(n_2 \mid n_1) \cdot \ldots \cdot P(n_T \mid n_{T-1})$$



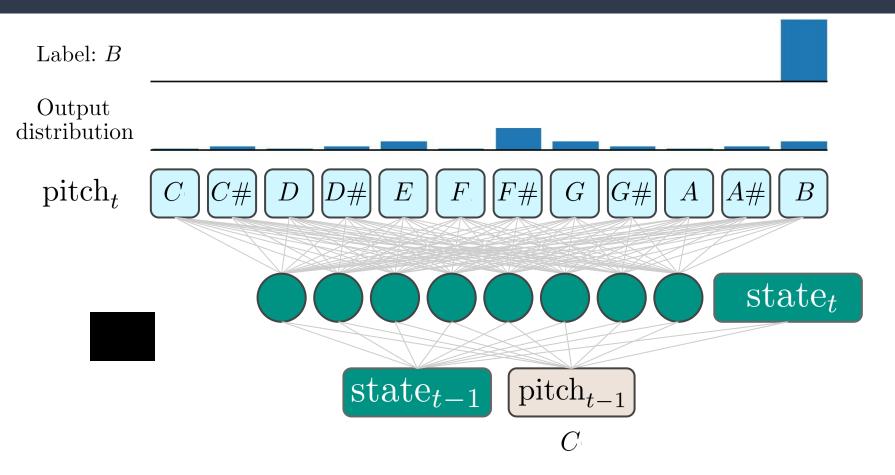
Generalizing our language model

$$\begin{bmatrix} \text{Simple} & P(n_1) \cdot P(n_2) \cdot \ldots \cdot P(n_T) \\ \\ \text{Improved} & P(n_1) \cdot P(n_2 \mid n_1) \cdot \ldots \cdot P(n_T \mid n_{T-1}) \\ \\ \\ \text{Generalized language model} \\ \\ P(n_1) \cdot P(n_2 \mid n_1) \cdot \ldots \cdot P(n_T \mid n_{T-1}, \ldots, n_1) \\ \end{bmatrix}$$

Neural network approach



Neural network approach



Language modeling of piano music

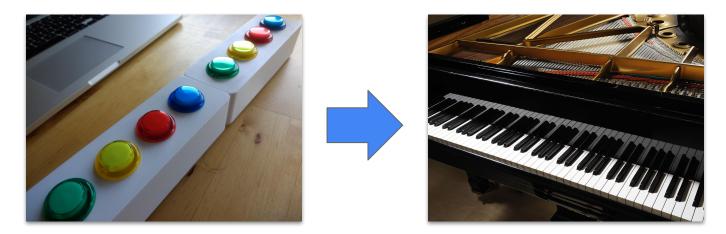
Music Transformer (Huang et al. 2018)

https://magenta.tensorflow.org/music-transformer

Language modeling with gestural control

Piano Genie (Donahue et al. 2018)

https://magenta.tensorflow.org/pianogenie



Demo: http://piano-genie.glitch.me

http://pear-olive.glitch.me

Language modeling of recipes

- 1 ¹/₂ teaspoon chicken brown water
- 1 teaspoon dry chopped leaves
- 1/3 cup shallows
- 10 oz brink custard
- ¹/₄ cup bread liquid
- ¹/₂ cup baconfroots

Instructions:

Dice the pulp of the eggplant and put it in a bowl with the vast stark rocks. Whip ½ pint of heavy cream. Add 4 Tbsp. brandy or rum to possibly open things that will never be wholly reported.

Janelle Shane 2019 <u>aiweirdness.com</u>

Language modeling of audio

WaveNet (van den Oord et al 2016)

https://deepmind.com/blog/wavenet-generative-model-raw-audio/

Input	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hidden Layer	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Hidden Layer	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Hidden Layer	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Output	0	0	0	0	0	0	0	0	•	0	0	0	•	0	0	

Helena Serin Primrose (2019)

Mario Klingemann Untitled (2018)

Holly Herndon & Jlin Godmother (2018)

cdonahue@ucsd.edu

chrisdonahue.com